Exact Acceleration of Linear Object Detectors

author: Charles Dubout, IDIAP Research Institute
chairman: Antonio Torralba, Center for Future Civic Media, Massachusetts Institute of Technology, MIT
chairman: Stefan Carlsson, KTH - Royal Institute of Technology
published: Nov. 12, 2012,   recorded: October 2012,   views: 431
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We describe a general and exact method to considerably speed up linear object detection systems operating in a sliding, multi-scale window fashion, such as the individual part detectors of part-based models. The main bottleneck of many of those systems is the computational cost of the convolutions between the multiple rescalings of the image to process, and the linear filters. We make use of properties of the Fourier transform and of clever implementation strategies to obtain a speedup factor proportional to the filters' sizes. The gain in performance is demonstrated on the well known Pascal VOC benchmark, where we accelerate the speed of said convolutions by an order of magnitude.

See Also:

Download slides icon Download slides: eccv2012_dubout_detectors_01.pdf (980.5┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: