Ultracold atoms: Model kits for quantum matter

author: Rudolf Grimm, Institute for Experimental Physics, University of Innsbruck
published: April 5, 2012,   recorded: March 2012,   views: 4881


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Atomic samples with temperatures in the nanokelvin range, prepared by advanced methods of laser and evaporative cooling, offer unique opportunities to study a large variety of phenomena in complex quantum systems. The important degrees of freedom and parameters can be controlled in a way, not accessible to traditional quantum many-body systems. Both bosonic and fermionic atoms are available to create Bose-Einstein condensates, degenerate Fermi gases, and even quantum-degenerate mixtures. Optical traps allow the experimentalists to realize macroscopic traps, artificial crystals (“optical lattices”), and low-dimensional environments. The interaction can be magnetically tuned exploiting a resonance phenomenon, called “Feshbach resonance”. Based on this rich tool-box, many intriguing model systems can be experimentally studied with strong connections to different branches of physics. After a general introduction into the field, I will present a few examples based on research in Innsbruck, including new developments on strongly interacting Fermi gases and few-body “Efimov” states in Bose gases.

See Also:

Download slides icon Download slides: dnevi_grimm_ultracold_01.pdf (6.8 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: