Quantum information and stabilization of quantum states by feedback control

author: Hans Maassen, Faculty of Science, Radboud University Nijmegen
published: Oct. 16, 2012,   recorded: September 2012,   views: 289
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We give a basic account of quantum filtering and control from the point of view of quantum probability and information theory. We describe and prove the "no-cloning" principle, and Heisenberg's related principle which says that the leakage of information to the environment necesserily implies. a deterioration of the quantum state. A typical challenge to quantum technology issuing from this principle is to recover the leaked information and to feed it back into the system under control in order to preserve its state. We show that in the situation of discrete time and complete recovery such feedback control indeed enables us to stabilize any particular quantum state, pure or mixed. We illustrate this fact by an example where it is actually well-known: the fluorescent two-level atom (in a discrete time setting).

See Also:

Download slides icon Download slides: cyberstat2012_maassen_quantum_feedback_01.pdf (1.1┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: