Food Recognition Using Statistics of Pairwise Local Features

author: Shulin (Lynn) Yang, Department of Computer Science and Engineering, University of Washington
published: July 19, 2010,   recorded: June 2010,   views: 11380


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Food recognition is difficult because food items are deformable objects that exhibit significant variations in appearance. We believe the key to recognizing food is to exploit the spatial relationships between different ingredients (such as meat and bread in a sandwich). We propose a new representation for food items that calculates pairwise statistics between local features computed over a soft pixellevel segmentation of the image into eight ingredient types. We accumulate these statistics in a multi-dimensional histogram, which is then used as a feature vector for a discriminative classifier. Our experiments show that the proposed representation is significantly more accurate at identifying food than existing methods.

See Also:

Download slides icon Download slides: cvpr2010_yang_frus_01.v1.pdf (11.6 MB)

Download article icon Download article: cvpr2010_yang_frus_01.pdf (6.5 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: