Dynamical Binary Latent Variable Models for 3D Human Pose Tracking

author: Graham Taylor, School of Engineering, University of Guelph
published: July 19, 2010,   recorded: June 2010,   views: 6008


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We introduce a new class of probabilistic latent variable model called the Implicit Mixture of Conditional Restricted Boltzmann Machines (imCRBM) for use in human pose tracking. Key properties of the imCRBM are as follows: (1) learning is linear in the number of training exemplars so it can be learned from large datasets; (2) it learns coherent models of multiple activities; (3) it automatically discovers atomic “movemes”; and (4) it can infer transitions between activities, even when such transitions are not present in the training set. We describe the model and how it is learned and we demonstrate its use in the context of Bayesian filtering for multi-view and monocular pose tracking. The model handles difficult scenarios including multiple activities and transitions among activities. We report state-of-the-art results on the HumanEva dataset.

See Also:

Download slides icon Download slides: cvpr2010_taylor_dblv_01.v1.pdf (13.9 MB)

Download article icon Download article: cvpr2010_taylor_dblv_01.pdf (2.1 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: