Aggregating local descriptors into a compact image representation

author: Hervé Jégou, INRIA Rennes
published: July 19, 2010,   recorded: June 2010,   views: 11076


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We address the problem of image search on a very large scale, where three constraints have to be considered jointly: the accuracy of the search, its efficiency, and the memory usage of the representation. We first propose a simple yet efficient way of aggregating local image descriptors into a vector of limited dimension, which can be viewed as a simplification of the Fisher kernel representation. We then show how to jointly optimize the dimension reduction and the indexing algorithm, so that it best preserves the quality of vector comparison. The evaluation shows that our approach significantly outperforms the state of the art: the search accuracy is comparable to the bag-of-features approach for an image representation that fits in 20 bytes. Searching a 10 million image dataset takes about 50ms.

See Also:

Download slides icon Download slides: cvpr2010_jegou_ald_01.v1.pdf (730.6 KB)

Download article icon Download article: cvpr2010_jegou_ald_01.pdf (1.6 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Reviews and comments:

Comment1 wallace, August 7, 2010 at 12:29 p.m.:

I cannot view any videos in the website. The reported error is server not found rtmp:// Could the administrator help to solve the issue?

Write your own review or comment:

make sure you have javascript enabled or clear this field: