Object Separation In X-Ray Image Sets

author: Geremy Heitz, Qylur Security Systems, Inc.
published: July 19, 2010,   recorded: June 2010,   views: 4516


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


In the segmentation of natural images, most algorithms rely on the concept of occlusion. In x-ray images, however, this assumption is violated, since x-ray photons penetrate most materials. In this paper, we introduce SATISφ, a method for separating objects in a set of x-ray images using the property of additivity in log space, where the logattenuation at a pixel is the sum of the log-attenuations of all objects that the corresponding x-ray passes through. Our method leverages multiple projection views of the same scene from slightly different angles to produce an accurate estimate of attenuation properties of objects in the scene. These properties can be used to identify the material composition of these objects, and are therefore crucial for applications like automatic threat detection. We evaluate SATISφ on a set of collected x-ray scans, showing that it outperforms a standard image segmentation approach and reduces the error of material estimation.

See Also:

Download slides icon Download slides: cvpr2010_heitz_osxr_01.v1.pdf (851.4 KB)

Download article icon Download article: cvpr2010_heitz_osxr_01.pdf (2.7 MB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: