Estimating Camera Pose from a Single Urban Ground-View Omnidirectional Image and a 2D Building Outline Map
published: July 19, 2010, recorded: June 2010, views: 5896
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
A framework is presented for estimating the pose of a camera based on images extracted from a single omnidirectional image of an urban scene, given a 2D map with building outlines with no 3D geometric information nor appearance data. The framework attempts to identify vertical corner edges of buildings in the query image, which we term VCLH, as well as the neighboring plane normals, through vanishing point analysis. A bottom-up process further groups VCLH into elemental planes and subsequently into 3D structural fragments modulo a similarity transformation. A geometric hashing lookup allows us to rapidly establish multiple candidate correspondences between the structural fragments and the 2D map building contours. A voting-based camera pose estimation method is then employed to recover the correspondences admitting a camera pose solution with high consensus. In a dataset that is even challenging for humans, the system returned a top-30 ranking for correct matches out of 3600 camera pose hypotheses (0.83% selectivity) for 50.9% of queries.
See Also:
Download slides:
cvpr2010_cham_ecps_01.v1.pdf (2.1 MB)
Download slides:
cvpr2010_cham_ecps_01.ppt (6.1 MB)
Download article:
cvpr2010_cham_ecps_01.pdf (680.3 KB)
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: