Recursive Teaching Dimension Versus VC Dimension

author: Hans U. Simon, Fakultät für Mathematik, Ruhr University Bochum
published: Aug. 20, 2015,   recorded: July 2015,   views: 1955


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The Recursive Teaching Dimension (RTD) of a concept class C is a complexity parameter referring to the worst-case number of labelled examples needed to learn any target concept in C from a teacher following the recursive teaching model. It is the first teaching complexity notion for which interesting relationships to the VC dimension (VCD) have been established. In particular, for finite maximum classes of a given VCD d, the RTD equals d. To date, there is no concept class known for which the ratio of RTD over VCD exceeds 3/2. However, the only known upper bound on RTD in terms of VCD is exponential in the VCD and depends on the size of the concept class. We pose the following question: is the RTD upper-bounded by a function that grows only linearly in the VCD? Answering this question would further our understanding of the relationships between the complexity of teaching and the complexity of learning from randomly chosen examples. In addition, the answer to this question, whether positive or negative, is known to have implications on the study of the long-standing open sample compression conjecture, which claims that every concept class of VCD d has a sample compression scheme in which samples for concepts in the class are compressed to subsets of size no larger than d.

See Also:

Download slides icon Download slides: colt2015_simon_rtd_01.pdf (52.3 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: