Minimax Fixed-Design Linear Regression

author: Alan Malek, Department of Electrical Engineering and Computer Sciences, UC Berkeley
published: Aug. 20, 2015,   recorded: July 2015,   views: 1975


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We consider a linear regression game in which the covariates are known in advance: at each round, the learner predicts a real-value, the adversary reveals a label, and the learner incurs a squared error loss. The aim is to minimize the regret with respect to linear predictions. For a variety of constraints on the adversary's labels, we show that the minimax optimal strategy is linear, with a parameter choice that is reminiscent of ordinary least squares (and as easy to compute). The predictions depend on all covariates, past and future, with a particular weighting assigned to future covariates corresponding to the role that they play in the minimax regret. We study two families of label sequences: box constraints (under a covariate compatibility condition), and a weighted 2-norm constraint that emerges naturally from the analysis. The strategy is adaptive in the sense that it requires no knowledge of the constraint set. We obtain an explicit expression for the minimax regret for these games. For the case of uniform box constraints, we show that, with worst case covariate sequences, the regret is $O(d\log T)$, with no dependence on the scaling of the covariates.

See Also:

Download slides icon Download slides: colt2015_malek_linear_regression_01.pdf (471.9┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: