On Learning Distributions from their Samples

author: Sudeep Kamath, Department of Electrical Engineering, Princeton University
published: Aug. 20, 2015,   recorded: July 2015,   views: 93
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

One of the most natural and important questions in statistical learning is how well a distribution can be approximated from its samples. Surprisingly, this question has so far been resolved for only a few approximation measures, for example the KL-divergence, and even then the answer is ad hoc and not well understood. We resolve the question for three more important approximation measures, $\ell_1$, $\ell_2^2$, and $\chi^2$, and if the probabilities are bounded away from zero, we resolve the question for all smooth $f$-divergence approximation measures, thereby providing a coherent understanding of the rate at which a distribution can be approximated from its samples.

See Also:

Download slides icon Download slides: colt2015_kamath_learning_distributions_01.pdf (2.9┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: