On Consistent Surrogate Risk Minimization and Property Elicitation

author: Shivani Agarwal, Department of Computer Science and Automation (CSA), Indian Institute of Science Bangalore
published: Aug. 20, 2015,   recorded: July 2015,   views: 92
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Surrogate risk minimization is a popular framework for supervised learning; property elicitation is a widely studied area in probability forecasting, machine learning, statistics and economics. In this paper, we connect these two themes by showing that calibrated surrogate losses in supervised learning can essentially be viewed as eliciting or estimating certain properties of the underlying conditional label distribution that are sufficient to construct an optimal classifier under the target loss of interest. Our study helps to shed light on the design of convex calibrated surrogates. We also give a new framework for designing convex calibrated surrogates under low-noise conditions by eliciting properties that allow one to construct ‘coarse’ estimates of the underlying distribution.

See Also:

Download slides icon Download slides: colt2015_agarwal_property_elicitation_01.pdf (865.4 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: