Community Detection via Random and Adaptive Sampling

author: Se-Young Yun, INRIA
published: July 15, 2014,   recorded: June 2014,   views: 74
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

In this paper, we consider networks consisting of a finite number of non-overlapping communities. To extract these communities, the interaction between pairs of nodes may be sampled from a large available data set, which allows a given node pair to be sampled several times. When a node pair is sampled, the observed outcome is a binary random variable, equal to 1 if nodes interact and to 0 otherwise. The outcome is more likely to be positive if nodes belong to the same communities. For a given budget of node pair samples or observations, we wish to jointly design a sampling strategy (the sequence of sampled node pairs) and a clustering algorithm that recover the hidden communities with the highest possible accuracy. We consider both non-adaptive and adaptive sampling strategies, and for both classes of strategies, we derive fundamental performance limits satisfied by any sampling and clustering algorithm. In particular, we provide necessary conditions for the existence of algorithms recovering the communities accurately as the network size grows large. We also devise simple algorithms that accurately reconstruct the communities when this is at all possible, hence proving that the proposed necessary conditions for accurate community detection are also sufficient. The classical problem of community detection in the stochastic block model can be seen as a particular instance of the problems consider here. But our framework covers more general scenarios where the sequence of sampled node pairs can be designed in an adaptive manner. The paper provides new results for the stochastic block model, and extends the analysis to the case of adaptive sampling.

See Also:

Download slides icon Download slides: colt2014_yun_sampling_01.pdf (1.5┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: