Online learning & multi-objective optimization

author: Vianney Perchet, Probabilities and Random Models Laboratory, Université Pierre et Marie Curie (UPMC)
published: July 15, 2014,   recorded: June 2014,   views: 56
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

In the standard setting of approachability there are two players and a target set. The players play a repeated vector-valued game where one of them wants to have the average vector-valued payoff converge to the target set which the other player tries to exclude. We revisit the classical setting and consider the setting where the player has a preference relation between target sets: she wishes to approach the smallest (“best”) set possible given the observed average payoffs in hindsight. Moreover, as opposed to previous works on approachability, and in the spirit of online learning, we do not assume that there is a known game structure with actions for two players. Rather, the player receives an arbitrary vector-valued reward vector at every round. We show that it is impossible, in general, to approach the best target set in hindsight. We further propose a concrete strategy that approaches a non-trivial relaxation of the best-in-hindsight given the actual rewards. Our approach does not require projection onto a target set and amounts to switching between scalar regret minimization algorithms that are performed in episodes.

See Also:

Download slides icon Download slides: colt2014_perchet_optimization.pdf (649.5 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: