## New Algorithms for Learning Incoherent and Overcomplete Dictionaries

published: July 15, 2014, recorded: June 2014, views: 3873

# Slides

# Related content

# Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our**to describe your request and upload the data.**

__ticket system__*Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.*

# Description

In sparse recovery we are given a matrix A∈Rn×m (“the dictionary”) and a vector of the form AX where X is sparse, and the goal is to recover X. This is a central notion in signal processing, statistics and machine learning. But in applications such as sparse coding, edge detection, compression and super resolution, the dictionary A is unknown and has to be learned from random examples of the form Y=AX where X is drawn from an appropriate distribution - this is the dictionary learning problem. In most settings, A is overcomplete: it has more columns than rows. This paper presents a polynomial-time algorithm for learning overcomplete dictionaries; the only previously known algorithm with provable guarantees is the recent work of Spielman et al. (2012) who who gave an algorithm for the undercomplete case, which is rarely the case in applications. Our algorithm applies to incoherent dictionaries which have been a central object of study since they were introduced in seminal work of Donoho and Huo (1999). In particular, a dictionary is μ-incoherent if each pair of columns has inner product at most μ/n−√.

The algorithm makes natural stochastic assumptions about the unknown sparse vector X, which can contain k≤cmin(n−√/μlogn,m1/2−η) non-zero entries (for any η>0). This is close to the best k allowable by the best sparse recovery algorithms even if one knows the dictionary A exactly. Moreover, both the running time and sample complexity depend on log1/ϵ, where ϵ is the target accuracy, and so our algorithms converge very quickly to the true dictionary. Our algorithm can also tolerate substantial amounts of noise provided it is incoherent with respect to the dictionary (e.g., Gaussian). In the noisy setting, our running time and sample complexity depend polynomially on 1/ϵ, and this is necessary.

# Link this page

Would you like to put a link to this lecture on your homepage?

Go ahead! Copy the HTML snippet !

## Write your own review or comment: