Logistic Regression: Tight Bounds for Stochastic and Online Optimization

author: Kfir Y. Levy, Technion - Israel Institute of Technology
published: July 15, 2014,   recorded: June 2014,   views: 57
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

The logistic loss function is often advocated in machine learning and statistics as a smooth and strictly convex surrogate for the 0-1 loss. In this paper we investigate the question of whether these smoothness and convexity properties make the logistic loss preferable to other widely considered options such as the hinge loss. We show that in contrast to known asymptotic bounds, as long as the number of prediction/optimization iterations is sub exponential, the logistic loss provides no improvement over a generic non-smooth loss function such as the hinge loss. In particular we show that the convergence rate of stochastic logistic optimization is bounded from below by a polynomial in the diameter of the decision set and the number of prediction iterations, and provide a matching tight upper bound. This resolves the COLT open problem of McMahan and Streeter (2012).

See Also:

Download slides icon Download slides: colt2014_levy_bounds.pdf (3.7┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: