Volumetric Ellipsoids: An exploration basis for learning

author: Zohar Karnin, Yahoo! Research Israel
published: July 15, 2014,   recorded: June 2014,   views: 2116


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Numerous machine learning problems require an exploration basis - a mechanism to explore the action space. We define a novel geometric notion of exploration basis with low variance called volumetric spanners, and give efficient algorithms to construct such bases. We show how efficient volumetric spanners give rise to an efficient and near-optimal regret algorithm for bandit linear optimization over general convex sets. Previously such results were known only for specific convex sets, or under special conditions such as the existence of an efficient self-concordant barrier for the underlying set.

See Also:

Download slides icon Download slides: colt2014_karnin_learning.pdf (233.9┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: