Uniqueness of Tensor Decompositions with Applications to Polynomial Identifiability

author: Moses Charikar, Computer Science Department, Princeton University
published: July 15, 2014,   recorded: June 2014,   views: 2520

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


We give a robust version of the celebrated result of Kruskal on the uniqueness of tensor decompositions: given a tensor whose decomposition satisfies a robust form of Kruskal’s rank condition, we prove that it is possible to approximately recover the decomposition if the tensor is known up to a sufficiently small (inverse polynomial) error.

Kruskal’s theorem has found many applications in proving the identifiability of parameters for various latent variable models and mixture models such as Hidden Markov models, topic models etc. Our robust version immediately implies identifiability using only polynomially many samples in many of these settings – an essential first step towards efficient learning algorithms.

Our methods also apply to the “overcomplete” case, which has proved challenging in many applications. Given the importance of Kruskal’s theorem in the tensor literature, we expect that our robust version will have several applications beyond the settings we explore in this work.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: