Efficiency of conformalized ridge regression

author: Evgeny Burnaev, DATADVANCE
published: July 15, 2014,   recorded: June 2014,   views: 41
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Conformal prediction is a method of producing prediction sets that can be applied on top of a wide range of prediction algorithms. The method has a guaranteed coverage probability under the standard IID assumption regardless of whether the assumptions (often considerably more restrictive) of the underlying algorithm are satisfied. However, for the method to be really useful it is desirable that in the case where the assumptions of the underlying algorithm are satisfied, the conformal predictor loses little in efficiency as compared with the underlying algorithm (whereas being a conformal predictor, it has the stronger guarantee of validity). In this paper we explore the degree to which this additional requirement of efficiency is satisfied in the case of Bayesian ridge regression; we find that asymptotically conformal prediction sets differ little from ridge regression prediction intervals when the standard Bayesian assumptions are satisfied.

See Also:

Download slides icon Download slides: colt2014_burnaev_regression_01.pdf (433.9┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: