A Tensor Spectral Approach to Learning Mixed Membership Community Models

author: Rong Ge, Department of Computer Science, Princeton University
published: Aug. 9, 2013,   recorded: June 2013,   views: 4095
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Modeling community formation and detecting hidden communities in networks is a well studied problem. However, theoretical analysis of community detection has been mostly limited to models with non-overlapping communities such as the stochastic block model. In this paper, we remove this restriction, and consider a family of probabilistic network models with overlapping communities, termed as the mixed membership Dirichlet model, first introduced in Aioroldi et. al (2008). This model allows for nodes to have fractional memberships in multiple communities and assumes that the community memberships are drawn from a Dirichlet distribution. We propose a unified approach to learning these models via a tensor spectral decomposition method. Our estimator is based on low-order moment tensor of the observed network, consisting of 3-star counts. Our learning method is fast and is based on simple linear algebra operations, e.g. singular value decomposition and tensor power iterations. We provide guaranteed recovery of community memberships and model parameters and present a careful finite sample analysis of our learning method. Additionally, our results match the best known scaling requirements in the special case of the stochastic block model.

See Also:

Download slides icon Download slides: colt2013_ge_models_01.pdf (2.1┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: