Randomized partition trees for exact nearest neighbor search

author: Sanjoy Dasgupta, Department of Computer Science and Engineering, UC San Diego
published: Aug. 9, 2013,   recorded: June 2013,   views: 217
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

The k-d tree was one of the first spatial data structures proposed for nearest neighbor search. Its efficacy is diminished in high-dimensional spaces, but several variants, with randomization and overlapping cells, have proved to be successful in practice. We analyze three such schemes. We show that the probability that they fail to find the nearest neighbor, for any data set and any query point, is directly related to a simple potential function that captures the difficulty of the point configuration. We then bound this potential function in two situations of interest: the first, when data come from a doubling measure, and the second, when the data are documents from a topic model.

See Also:

Download slides icon Download slides: colt2013_dasgupta_trees_01.pdf (324.8┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: