A near-optimal algorithm for finite partial-monitoring games against adversarial opponents

author: Gábor Bartók, Department of Computer Science, ETH Zurich
published: Aug. 9, 2013,   recorded: June 2013,   views: 2930


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Partial monitoring is an online learning model where in every time step, after a learner and an opponent choose their actions, the loss and the feedback for the learner is calculated based on a loss and a feedback function, both of which are known to the learner ahead of time. As in other online learning scenarios, the goal of the learner is to minimize his cumulative loss. In this paper we present and analyze a new algorithm for locally observable partial monitoring games. We prove that the expected regret of our algorithm is of O(√N′T), where T is the time horizon and N′ is the size of the largest point-local game. The most important improvement of this bound compared to previous results is that it does not depend directly on the number of actions, but rather on the structure of the game.

See Also:

Download slides icon Download slides: colt2013_bartok_opponents_01.pdf (396.2 KB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: