Probabilistic Decision-Making Under Model Uncertainty

author: Joelle Pineau, School of Computer Science, McGill University
published: Jan. 15, 2009,   recorded: October 2008,   views: 12046


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Partially Observable Markov Decision Processes offer a rich mathematical framework for decision-making under uncertainty. In recent years, a number of methods have been developed to optimize the choice of action, given a parametric model of the domain. In many applications, however, this model must be learned using a finite set of trajectories. When this data proves difficult or expensive to collect, it is often the case that the resulting model is poorly or imprecisely defined.

In this talk, I will present two recent results on the topic of decision-making under model uncertainty. In the first half, I will describe a method for estimating the bias and variance of the value function in terms of the statistics of the empirical transition and observation model. Such error terms can be used to meaningfully compare the value of different policies. In the second half, I will present a bayesian approach designed to simultaneously improve the model and select good actions. Performance of the two methods will be illustrated using problems drawn from the fields of robotics and medical treatment design.

See Also:

Download slides icon Download slides: cmulls08_pineau_pdm_01.pdf (1.0┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: