Weighted Graphs and Disconnected Components: Patterns and a Generator

author: Mary McGlohon, School of Computer Science, Carnegie Mellon University
published: March 29, 2009,   recorded: October 2008,   views: 5360

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


The vast majority of earlier work has focused on graphs which are both connected (typically by ignoring all but the giant connected component), and unweighted. Here we study numerous, real, weighted graphs, and report surprising discoveries on the way in which new nodes join and form links in a social network. The motivating questions were the following: How do connected components in a graph form and change over time? What happens after new nodes join a network– how common are repeated edges? We study nu- merous diverse, real graphs (citation networks, networks in social media, internet traffic, and others); and make the following contributions:

  • we observe that the non-giant connected components seem to stabilize in size,
  • we observe the weights on the edges follow several power laws with surprising exponents, and (c) we propose an intuitive, generative model for graph growth that obeys observed patterns.

Joint work with Leman Akoglu and Christos Faloutsos.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: