PASCAL Bootcamp in Machine Learning, Vilanova 2007

PASCAL Bootcamp in Machine Learning, Vilanova 2007

22 Lectures · Jul 2, 2007

About

Pascal Boot camp is meant to be a crossroad between a summer school and a strong workshop session. ;And the following professors kindly accepted to participate: :Isabelle Guyon, Ulrike von Luxburg, Mark Girolami, Colin de la Higuera, Joaquín Quiñonero, Florence d'Alche-Buc, William Triggs, Mikaela Keller, Amir Saffari, Cecilio Angulo, Mario Martín, Lluís Belanche.

The main topics developed in this summercamp will be:

  • Basic Math and TCS for Machine Learning
  • Useful existing software for Machine Learning
  • Introduction to Machine Learning
  • Theoretical frameworks and foundations
  • Experimental Machine Learning
  • Feature extraction and model selection
  • Graphical models
  • Kernel methods and linear predictors
  • Clustering
  • General view of application areas
  • Machine learning in vision
  • Machine learning in user interfaces
  • Machine learning for data mining

Related categories

Uploaded videos:

Introduction and Panels

video-img
04:02

Introduction and Welcome to the PASCAL Bootcamp in Machine Learning 2007

José L. Balcázar

Jul 02, 2007

 · 

4992 Views

Introduction
video-img
01:08:24

PANEL: Experiences in research, teaching, and applications of ML

Jul 09, 2007

 · 

21953 Views

Lecture

Lectures

video-img
01:17:48

Introduction to Machine Learning

Isabelle Guyon

Jul 02, 2007

 · 

66701 Views

Invited Talk
video-img
02:21:56

Basics of algorithmics, computation models, formal languages

Colin de la Higuera

Jul 02, 2007

 · 

19985 Views

Tutorial
video-img
03:02:14

Basics of probability and statistics

Mikaela Keller

Jul 02, 2007

 · 

281936 Views

Lecture
video-img
01:16:14

Introduction to CLOP Machine Learning Toolbox

Amir Saffari

Jul 02, 2007

 · 

6878 Views

Lecture
video-img
55:47

Learning without overlearning

Isabelle Guyon

Jul 04, 2007

 · 

10964 Views

Lecture
video-img
57:16

Introduction to feature selection

Isabelle Guyon

Jul 04, 2007

 · 

41332 Views

Lecture
video-img
45:05

Embedded Methods

Isabelle Guyon

Jul 05, 2007

 · 

12296 Views

Lecture
video-img
56:57

Other ML/DM software (R, Weka, Yale)

Lluís Belanche

Jul 05, 2007

 · 

17282 Views

Lecture
video-img
01:25:20

Feature construction

Isabelle Guyon

Nov 06, 2007

 · 

10321 Views

Lecture
video-img
21:15

Casuality and feature selection

Isabelle Guyon

Nov 14, 2007

 · 

7359 Views

Lecture
video-img
01:46:59

Probability, Information Theory and Bayesian Inference

Joaquin Quiñonero Candela

Jul 05, 2007

 · 

39452 Views

Tutorial
video-img
02:01:49

The EM algorithm and Mixtures of Gaussians

Joaquin Quiñonero Candela

Jul 06, 2007

 · 

25662 Views

Lecture
video-img
03:07:33

Kernels and Gaussian Processes

Mark Girolami

Jul 09, 2007

 · 

17385 Views

Tutorial
video-img
03:24:22

Lectures on Clustering

Ulrike von Luxburg

Jul 09, 2007

 · 

86602 Views

Tutorial
video-img
02:37:55

Theory and Applications of Kernel Space

Florence d'Alche-Buc

Jul 11, 2007

 · 

13227 Views

Tutorial
video-img
02:38:48

Machine Learning in Vision

Bill Triggs

Jul 12, 2007

 · 

16527 Views

Lecture
video-img
01:29:45

ML in Bioinformatics

Florence d'Alche-Buc

Oct 30, 2007

 · 

13041 Views

Lecture

Student Sessions

video-img
16:20

An Introduction to Ensemble and Boosting

Amir Saffari

Jul 10, 2007

 · 

12533 Views

Lecture
video-img
26:34

Learning the topology of a data set

Pierre Gaillard

Jul 12, 2007

 · 

6866 Views

Lecture
video-img
18:11

System for extracting data (facts) from large amount of unstructured documents

Luka Bradeško

Jul 12, 2007

 · 

7383 Views

Lecture