Metric Regression Forests for Human Pose Estimation

author: Gerard Pons-Moll, Faculty of Electrical Engineering and Computer Science, Leibniz University of Hannover
published: April 3, 2014,   recorded: September 2013,   views: 2536
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

We present a new method for inferring dense data to model correspondences, focusing on the application of human pose estimation from depth images. Recent work proposed the use of regression forests to quickly predict correspondences between depth pixels and points on a 3D human mesh model. That work, however, used a proxy forest training objective based on the classification of depth pixels to body parts. In contrast, we introduce Metric Space Information Gain (MSIG), a new decision forest training objective designed to directly optimize the entropy of distributions in a metric space. When applied to a model surface, viewed as a metric space defined by geodesic distances, MSIG aims to minimize image-to-model correspondence uncertainty. A naïve implementation of MSIG would scale quadratically with the number of training examples. As this is intractable for large datasets, we propose a method to compute MSIG in linear time. Our method is a principled generalization of the proxy classification objective, and does not require an extrinsic isometric embedding of the model surface in Euclidean space. Our experiments demonstrate that this leads to correspondences that are considerably more accurate than state of the art, using far fewer training images.

See Also:

Download slides icon Download slides: bmvc2013_pons_moll_regression_01.pdf (2.4 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: