Detection and Tracking of Occluded People

author: Siyu Tang, Max Plank Institute for Brain Research, Max Planck Institute
published: Oct. 9, 2012,   recorded: September 2012,   views: 2050
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

We consider the problem of detection and tracking of multiple people in crowded street scenes. State-of-the-art methods perform well in scenes with relatively few people, but are severely challenged by scenes with many subjects that partially occlude each other. This limitation is due to the fact that current people detectors fail when persons are strongly occluded. We observe that typical occlusions are due to overlaps between people and propose a people detector tailored to various occlusion levels. Instead of treating partial occlusions as distractions, we leverage the fact that person/person occlusions result in very characteristic appearance patterns that can help to improve detection results. We demonstrate the performance of our occlusion-aware person detector on a new dataset of people with controlled but severe levels of occlusion and on two challenging publicly available benchmarks outperforming single person detectors in each case.

See Also:

Download slides icon Download slides: bmvc2012_tang_occluded_people_01.pdf (39.1┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: