Altered sleep oscillations as early biomarkers of Parkinson’s disease cholinopathy

author: Jasna Saponjic, University of Belgrade
published: July 9, 2018,   recorded: May 2018,   views: 374


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Rhythmic oscillations in the electroencephalographic (EEG) local field potentials underlie the basis of behavioral states and neurological diseases through coherent binding of the cooperating neuronal ensembles. Biophysical methodological approaches enabled us to evidence an augmented cortical activation during non-rapid-eye-movement (NREM) and rapid-eye- movement (REM) sleep, expressed as a long-lasting augmentation of EEG beta vs. delta amplitude attenuation during NREM, with no change of sleep architecture during Parkinson’s disease ( PD) cholinopathy in rat. Moreover, two REM states emerged in the motor cortex (“theta coherent REM” and “sigma coherent REM”), with distinct cortical drives, expressed as the impaired theta and sigma oscillations propagation . T he hallmarks of earlier aging onset during PD cholinopathy is the REM sleep “enriched“ with sigma activity in the motor cortex alongside the broadly augmented propagation of EEG oscillations to the dorsal nuchal muscles. This unique REM sleep was underlined by the altered sleep spindles pattern and dynamic, reflecting the reorganization at thalamocortical level. Furthermore, there was a sustainable increase of EEG delta vs. beta amplitude decrease in the hippocampus during NREM sleep alongside the altered high voltage sleep spindle (HVS) dynamic during REM sleep, followed by hypokinesia. In order how they occurred, the h ippocampal NREM sleep disorder, altered HVS dynamics during REM sleep in the hippocampus and motor cortex, and delayed „hypokinesia” may serve as biomarkers of PD onset and progression. Understanding the role of brain oscillations as possible biomarkers of brain function is still a challenge, and despite extensive research, their role is still not well established.

Financing: This work was supported by Serbian Ministry of Education, Science and Technological Development Grant OI 173022.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: