Mechanically-driven ejection of viral DNA

author: Miklos Kellermayer, Semmelweis University
published: July 9, 2018,   recorded: May 2018,   views: 396


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Viruses are parasitic infectious agents with a nanoscale shell, known as the capsid, that encapsulates the genomic material. Most bacteriophage viruses invade bacteria by transferring their genome inside the host cell while leaving the capsid outside. Thus, the foremost event of bacteriophage infection is the ejection of genomic material into the host bacterium after the virus has recognized and bound to surface receptor sites. How ejection is triggered is yet unknown. We show, by manipulating individual mature T7 phage particles, that tapping the capsid wall with an oscillating atomic-force-microscope cantilever triggers rapid DNA ejection via the tail complex. Triggering rate increases exponentially as a function of force, hence follows transition-state theory, across an activation barrier of 23 kcal/mol at 1.2 nm along the reaction coordinate. The conformation of the ejected DNA molecule revealed that it had been exposed to a propulsive force. This force, arising from intra-capsid pressure, assists in initiating the ejection process and the transfer of DNA across spatial dimensions beyond that of the virion. Chemical immobilization of the tail fibers also resulted in enhanced DNA ejection, suggesting that the triggering process might involve a conformational switch that can be mechanically activated either by external forces or via the tail-fiber complex. Considering the emerging interest in artificial micro- and nanocapsules capable of triggered material release, understanding how viral DNA ejection is triggered carries important application potential. The unique features of the single-particle mechanics method employed here may be useful in uncovering the fine details of viral DNA ejection.

Financing: FP7, Hungarian Office for Research, Development and Inovation

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: