Cancer Risk and the Somatic Cell-lineage Tree

author: Imre Derenyi, Department of Biological Physics, Eötvös Loránd University
published: July 9, 2018,   recorded: May 2018,   views: 377
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

All the cells of an organism are the product of cell divisions organized into a single binary tree. This somatic cell-lineage tree is not uniform in the sense that its lineages have different lengths. As cell divisions are accompanied by replication errors, longer cell lineages are more prone to the accumulation of mutations and, thereby, to somatic evolution, which can potentially lead to the development of cancer. By mapping the accumulation of driver mutations along a somatic cell-lineage tree into a graph theoretical problem, we have been able to derive an analytical formula for the probability of carcinogenesis in an arbitrary cell-lineage tree with a given rate of driver mutations per cell division. The result is consistent with epidemiological data and highlights the significance of the longest cell lineages. We also show how tissues can minimize the length of their longest lineages through differentiation hierarchies.

See Also:

Download slides icon Download slides: biophysics2018_derenyi_cancer_risk_01.pdf (1.8 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: