Asymptotic Theory for Linear-Chain Conditional Random Fields

author: Mathieu Sinn, University of Waterloo
published: May 6, 2011,   recorded: April 2011,   views: 4256


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


In this theoretical paper we develop an asymptotic theory for Linear-Chain Conditional Random Fields (L-CRFs) and apply it to derive conditions under which the Maximum Likelihood Estimates (MLEs) of the model weights are strongly consistent. We first define L-CRFs for infinite sequences and analyze some of their basic properties. Then we establish conditions under which ergodicity of the observations implies ergodicity of the joint sequence of observations and labels. This result is the key ingredient to derive conditions for strong consistency of the MLEs. Interesting findings are that the consistency crucially depends on the limit behavior of the Hessian of the likelihood function and that, asymptotically, the state feature functions do not matter.

See Also:

Download slides icon Download slides: aistats2011_sinn_asymptotic_01.pdf (267.6┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: