TopicFlow Model: Unsupervised Learning of Topic-specific Influences of Hyperlinked Documents

author: Ramesh Nallapati, Carnegie Mellon University
published: May 6, 2011,   recorded: April 2011,   views: 162
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Popular algorithms for modeling the influence of entities in networked data, such as PageRank, work by analyzing the hyperlink structure, but ignore the contents of documents. However, often times, influence is topic dependent, e.g., a web page of high influence in politics may be an unknown entity in sports. We design a new model called TopicFlow, which combines ideas from network flow and topic modeling, to learn this notion of topic specific influences of hyperlinked documents in a completely unsupervised fashion. On the task of citation recommendation, which is an instance of capturing influence, the TopicFlow model, when combined with TF-IDF based cosine similarity, outperforms several competitive baselines by as much as 11.8%. Our empirical study of the model’s output on ACL corpus demonstrates its ability to identify topically influential documents. The Topic- Flow model is also competitive with the state-of-theart Relational Topic Models in predicting the likelihood of unseen text on two different data sets. Due to its ability to learn topic-specific flows across each hyperlink, the TopicFlow model can be a powerful visualization tool to track the diffusion of topics across a citation network.

See Also:

Download slides icon Download slides: aistats2011_nallapati_model_01.pdf (1.2 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: