On the relation between universality, characteristic kernels and RKHS embedding of measures

author: Bharath K. Sriperumbudur, Department of Electrical and Computer Engineering, UC San Diego
published: June 3, 2010,   recorded: May 2010,   views: 125
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Universal kernels have been shown to play an important role in the achievability of the Bayes risk by many kernel-based algorithms that include binary classification, regression, etc. In this paper, we propose a notion of universality that generalizes the notions introduced by Steinwart and Micchelli et al. and study the necessary and sufficient conditions for a kernel to be universal. We show that all these notions of universality are closely linked to the injective embedding of a certain class of Borel measures into a reproducing kernel Hilbert space (RKHS). By exploiting this relation between universality and the embedding of Borel measures into an RKHS, we establish the relation between universal and characteristic kernels. The latter have been proposed in the context of the RKHS embedding of probability measures, used in statistical applications like homogeneity testing, independence testing, etc.

See Also:

Download slides icon Download slides: aistats2010_sriperumbudur_otrbu_01.pdf (321.7┬áKB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: