Empirical Bernstein boosting

author: Pannaga Shivaswamy, Department of Computer Science, Columbia University
published: June 3, 2010,   recorded: May 2010,   views: 162
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Concentration inequalities that incorporate variance information (such as Bernstein's or Bennett's inequality) are often significantly tighter than counterparts (such as Hoeffding's inequality) that disregard variance. Nevertheless, many state of the art machine learning algorithms for classification problems like AdaBoost and support vector machines (SVMs) extensively use Hoeffding's inequalities to justify empirical risk minimization and its variants. This article proposes a novel boosting algorithm based on a recently introduced principle--sample variance penalization--which is motivated from an empirical version of Bernstein's inequality. This framework leads to an efficient algorithm that is as easy to implement as AdaBoost while producing a strict generalization. Experiments on a large number of datasets show significant performance gains over AdaBoost. This paper shows that sample variance penalization could be a viable alternative to empirical risk minimization.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: