Locally Analytic Schemes for Diffusion Filtering of Images

author: Martin Welk, Saarland University
published: Dec. 17, 2007,   recorded: September 2007,   views: 4412
Categories

Slides

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

Nonlinear diffusion filtering has proven its value as a versatile tool for structure-preserving image denoising. Among the most interesting methods of this class are tensor-driven anisotropic diffusion as well as singular isotropic diffusion filters like total variation flow. For different reasons, devising good numerical algorithms for these filters is challenging.

A spatial discretisation transforms nonlinear diffusion partial differential equations into systems of ordinary differential equations. Their investigation yields insights into the properties of diffusion-based algorithms but leads also to the design of new algorithms with favourable stability properties which are at the same time simple to implement. Moreover, interesting links to wavelet-based denoising methods are established in this way.

The talk focusses on the construction and properties of locally (semi-)analytic schemes for nonlinear isotropic and anisotropic diffusion on 2D images, with extensions to the 3D case.

See Also:

Download slides icon Download slides: acs07_welk_las.pdf (3.3┬áMB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: