Recent Advances in Large Linear Classification

author: Chih-Jen Lin, Department of Computer Science and Information Engineering, National Taiwan University
published: March 27, 2014,   recorded: November 2013,   views: 3523


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Linear classification is a useful tool in machine learning and data mining. For some data in a rich dimensional space, the prediction performance of linear classifiers has shown to be close to that of nonlinear classifiers such as kernel methods, but training and testing speed is much faster. Recently, many research works have proposed efficient optimization methods to construct linear classifiers. We briefly discuss some of them that were considered in our development of the software LIBLINEAR. We then move to discuss some extensions of linear classification. In particular, linear classifiers can be useful to either directly or indirectly approximate kernel classifiers. I will show some real-word examples for which we try to achieve fast training/testing speed, while maintain competitive accuracy. Finally, future challenges of this research topic, in particular, aspects on big-data linear classification, will be discussed.

See Also:

Download slides icon Download slides: acml2013_lin_large_linear_classification_01.pdf (382.9┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: