Convex integration and synthetic turbulence

author: László Székelyhidi Jr., University of Leipzig
published: July 6, 2021,   recorded: July 2021,   views: 2
Categories

Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Bibliography

Description

In the past decade convex integration has been established as a powerful and versatile technique for the construction of weak solutions of various nonlinear systems of partial differential equations arising in fluid dynamics, including the Euler and Navier-Stokes equations. The existence theorems obtained in this way come at a high price: solutions are highly irregular, non-differentiable, and very much non-unique as there is usually infinitely many of them. Therefore this technique has often been thought of as a way to obtain mathematical counterexamples in the spirit of Weierstrass’ non-differentiable function, rather than advancing physical theory; ”pathological”, ”wild”, ”paradoxical”, ”counterintuitive” are some of the adjectives usually associated with solutions obtained via convex integration. In this lecture I would like to draw on some recent examples to show that there are many more sides to the story, and that, with proper usage and interpretation, the convex integration toolbox can indeed provide useful insights for problems in hydrodynamics.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: