Identifying Topical Authorities in Microblogs

author: Aditya Pal, Department of Computer Science and Engineering, University of Minnesota
published: Aug. 9, 2011,   recorded: February 2011,   views: 3826


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Content in microblogging systems such as Twitter is produced by tens to hundreds of millions of users. This diversity is a notable strength, but also presents the challenge of finding the most interesting and authoritative authors for any given topic. To address this, we first propose a set of features for characterizing social media authors, including both nodal and topical metrics. We then show how probabilistic clustering over this feature space, followed by a within-cluster ranking procedure, can yield a final list of top authors for a given topic. We present results across several topics, along with results from a user study confirming that our method finds authors who are significantly more interesting and authoritative than those resulting from several baseline conditions. Additionally our algorithm is computationally feasible in near real-time scenarios making it an attractive alternative for capturing the rapidly changing dynamics of microblogs.

See Also:

Download slides icon Download slides: wsdm2011_pal_ita_01.pdf (533.2┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: