Personalizing Web Search using Long Term Browsing History

author: Nicolaas Matthijs, Centre for Applied Research in Educational Technologies, University of Cambridge
published: Aug. 9, 2011,   recorded: February 2011,   views: 3518


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Personalizing web search results has long been recognized as an avenue to greatly improve the search experience. We present a personalization approach that builds a user interest profile using users' complete browsing behavior, then uses this model to rerank web results. We show that using a combination of content and previously visited websites provides effective personalization. We extend previous work by proposing a number of techniques for filtering previously viewed content that greatly improve the user model used for personalization. Our approaches are compared to previous work in offline experiments and are evaluated against unpersonalized web search in large scale online tests. Large improvements are found in both cases.

See Also:

Download slides icon Download slides: wsdm2011_matthijs_pws_01.pdf (796.5┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: