Quality-Biased Ranking of Web Documents

author: Michael Bendersky, Google, Inc.
published: Aug. 9, 2011,   recorded: February 2011,   views: 3556


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Many existing retrieval approaches do not take into account the content quality of the retrieved documents, although link-based measures such as PageRank are commonly used as a form of document prior. In this paper, we present the quality-biased ranking method that promotes documents containing high-quality content, and penalizes low-quality documents. The quality of the document content can be determined by its readability, layout and ease-of-navigation, among other factors. Accordingly, instead of using a single estimate for document quality, we consider multiple content- based features that are directly integrated into a state-of- the-art retrieval method. These content-based features are easy to compute, store and retrieve, even for large web collections. We use several query sets and web collections to empirically evaluate the performance of our quality-biased retrieval method. In each case, our method consistently improves by a large margin the retrieval performance of text- based and link-based retrieval methods that do not take into account the quality of the document content.

See Also:

Download slides icon Download slides: wsdm2011_bendersky_qbr_01.pdf (819.1┬áKB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: