Leveraging Temporal Dynamics of Document Content in Relevance Ranking

author: Jonathan Elsas, Language Technologies Institute, Carnegie Mellon University
published: March 22, 2010,   recorded: February 2010,   views: 4349


Related Open Educational Resources

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.


Many web documents are dynamic, with content changing in varying amounts at varying frequencies. However, current document search algorithms have a static view of the document content, with only a single version of the document in the index at any point in time. In this paper, we present the first published analysis of using the temporal dynamics of document content to improve relevance ranking. We show that there is a strong relationship between the amount and frequency of content change and relevance. We develop a novel probabilistic document ranking algorithm that allows differential weighting of terms based on their temporal characteristics. By leveraging such content dynamics we show significant performance improvements for navigational queries.

See Also:

Download slides icon Download slides: wsdm2010_elsas_ltd_01.pdf (3.5┬áMB)

Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: