en-de
en-es
en-fr
en-sl
en
en-zh
0.25
0.5
0.75
1.25
1.5
1.75
2
Extracting semantic from crowds
Published on Sep 05, 20112882 Views
Related categories
Chapter list
Extracting Semantics from Crowds - 100:00
Egypt 201100:50
Semantic Structures: The DMOZ Project09:18
Classification Systems in Information and Library Sciences10:07
Objectives11:29
Extracting Semantics from ...13:19
Prepositional vs. Distributional Semantics14:01
Distributional Semantics17:18
Why apple is similiar to pear19:54
Why apple is not similiar to toothbrush21:56
Distributional Semantics22:52
Hearst Patterns23:45
Ontology Learning From Text25:55
Evaluation27:30
Limitations of Knowledge Extraction from Text31:10
Extracting Semantics from Crowds (i.e. Social Media)34:23
Crowdsourcing39:51
Crowdsourcing Semantics: An Experiment (2008)40:25
Extracting Semantics from Crowds - 241:28
Activities of Crowds Online42:10
Extracting Semantics from Crowds - 342:48
Social Labeling Example: Twitter42:54
Obesity43:28
Diabetes45:19
Extracting Semantics from Crowds - 445:33
Social Tagging Example: Delicious45:45
Tag Relatedness46:27
Intuition: Latent Hierachical Structures49:26
Tag Abstractness56:34
Emergent semantics through hierarchical clustering01:02:00
Semantic Validation of Folksonomies01:02:45
Semantically Evaluating Tag Hierarchies01:04:04
Limitations and Opportunities01:07:22
Different motivations for tagging01:07:52
How do Semantics Emerge?01:08:26
Example 101:12:11
Example 201:19:36
Example 301:26:42
Extracting Semantics from Crowds - 501:28:15
Result01:28:30
Mock up (1)01:28:38
Social Computation for the Web of Data01:28:38
Mock up (2)01:28:38
Extracting Semantics from ...01:28:39
Objectives01:28:43
Crowd Semantics01:31:21
Summary01:32:23
An Agenda for Semantic Computing Research01:33:11
Thank You01:33:55