Probabilistic and Bayesian Modelling I thumbnail
Pause
Mute
Subtitles
Playback speed
0.25
0.5
0.75
1
1.25
1.5
1.75
2
Full screen

Probabilistic and Bayesian Modelling I

Published on Feb 25, 200717485 Views

There is a dramatic growth in the availability of complex data from a wide range of different applications. The challenge of the data analyzer is to extract knowledge from the raw data by identifying

Related categories

Chapter list

Probabilistic & Bayesian Modeling00:01
Overview02:41
Simple example: The biased coin04:01
Exmple II: Gaussian density13:56
Example III: Gaussian noise and Linear Regression20:12
Example III: Gaussian noise and Linear Regression (cont.)29:50
Properties of Estimators31:14
Properties of Estimators (diagrams)36:14
Properties of Estimators (cont)43:51
Example: Independent Component Analysis48:08
Generative Model50:05
Generative Model (cont.)55:41
Feature Extraction59:15
Compute the Likelihood01:00:38