Structure-dependent microkinetic analysis of  heterogeneous catalytic processes: methodology and applications thumbnail
Pause
Mute
Subtitles not available
Playback speed
0.25
0.5
0.75
1
1.25
1.5
1.75
2
Full screen

Structure-dependent microkinetic analysis of heterogeneous catalytic processes: methodology and applications

Published on Sep 25, 2018403 Views

There is no doubt that the rational interpretation of the structure-activity relation in catalysis is a crucial task in the quest of engineering the chemical transformation at the molecular. In this r

Related categories

Chapter list

Structure-dependent microkinetic modeling: methodology and applications00:00
Catalysis is a kinetic phenomenon - 100:25
Catalysis is a kinetic phenomenon - 201:01
Catalysis is a kinetic phenomenon - 301:05
Catalysis is a kinetic phenomenon - 401:44
Catalysis is a kinetic phenomenon - 501:45
A multiscale functionality - 101:58
A multiscale functionality - 202:44
Functional-based design - 102:46
Need of bridging the scales03:33
Complication - 103:37
Complication - 203:58
“First things first… - 104:09
“First things first… - 204:21
Coupling CFD and microkinetic models - 104:49
Coupling CFD and microkinetic models -2 05:02
Effective decoupling of interdependencies - 105:14
Effective decoupling of interdependencies - 206:00
catalyticFOAM multiscale framework06:05
Show-case: Rashig-ring bed - 106:40
Show-case: Rashig-ring bed - 207:08
Complex domains07:14
Complication07:45
Complication + complexity - 108:03
Complication + complexity - 208:22
The complication and complexity trap - 109:00
The complication and complexity trap - 209:04
The complication and complexity trap - 309:17
The complication and complexity trap - 409:28
The complication and complexity trap - 510:05
Hierarchical multiscale approach - 110:08
Hierarchical multiscale approach - 210:32
Hierarchical multiscale approach - 310:40
Hierarchical multiscale approach - 410:52
Hierarchical multiscale approach - 610:56
Hierarchical multiscale approach - 711:09
Hierarchical multiscale approach - 811:29
CH4 CPOX on Rh experiments on foams11:51
Structure-less microkinetic modeling12:47
State-of-the-art microkinetic modeling - 113:07
State-of-the-art microkinetic modeling - 213:13
Catalysts have a “living” character13:45
From structure-less to structure-dependent microkinetic modeling14:10
Outline - 114:32
Outline - 215:40
CH4 CPO on Rh/Al2O3 - 115:43
CH4 CPO on Rh/Al2O3 - 2 16:55
CH4 CPO on Rh/Al2O3 - 316:59
Coupling microkinetic modeling and ab-initio thermodynamics - 117:01
Coupling microkinetic modeling and ab-initio thermodynamics - 217:36
Prediction of catalyst structure in reaction - 117:49
Prediction of catalyst structure in reaction - 218:25
Gas and adsorbate species axial profiles by reactor modelling - 118:44
Coupling microkinetic modeling and ab-initio thermodynamics18:46
Bulk phase diagram of Rh and Rh oxides - 119:06
Bulk phase diagram of Rh and Rh oxides - 219:37
Rh2O3 catalyst morphology in zone 1 of the reactor - 120:08
Surface terminations of Rh2O3 facets20:38
Rh2O3 catalyst morphology in zone 1 of the reactor - 221:01
Rh2O3 catalyst morphology in zone 2 of the reactor - 121:25
How CO* and H* affect the surface free energy - 121:38
How CO* and H* affect the surface free energy - 221:41
Rh2O3 catalyst morphology in zone 2 of the reactor - 222:03
Rh2O3 catalyst morphology in zone 2 of the reactor - 322:34
Comparison with characterization experiments - 122:54
Comparison with characterization experiments - 224:15
Coupling microkinetic modeling and ab-initio thermodynamics25:38
Outline - 325:55
Structure-dependent microkinetic modeling - 126:36
Structure-dependent microkinetic modeling - 226:51
Methodology: theory-to-theory comparison27:03
CH → C + H - 127:55
CH → C + H - 228:38
CH → C + H - 328:55
CH → C + H - 429:32
CH → C + H - 529:42
CH → C + H - 629:45
CH → C + H - 729:56
Different metals for each structure - 130:03
All structures – all metals30:12
CO → C + O - 130:37
CO → C + O - 230:47
CO → C + O - 331:36
Different structures for each metal - 231:45
CO → C + O - 431:52
Different structures for each metal - 331:55
CO → C + O - 532:07
All structures – all metals - 132:07
Reactant and products binding energies32:08
All structures – all metals - 233:16
t-COOH → CO2 + H - 133:18
t-COOH → CO2 + H - 233:57
t-COOH → CO2 + H - 333:59
Different structures for all metals - 435:47
Different structures for all metals - 535:56
All structures – all metals - 335:59
Conclusions on BEP36:11
Outline - 436:59
Monitoring activity and structure37:31
Coupling is more than «plug&play» - 138:35
Coupling is more than «plug&play» - 238:37
Coupling is more than «plug&play» - 338:45
Spectro-annular reactor. - 139:43
Spectro-annular reactor. - 240:11
Dry-reforming of methane on Rh40:52
CH4=4% CO2 /CH4=2:442:13
DR: CH4=4% CO2 /CH4=1 - 143:00
DR: CH4=4% CO2 /CH4=1 - 243:11
DR: CH4=4% CO2 /CH4=1 - 343:28
DR with O2 : CH4=4% CO2 /CH4 /O2=1/1/0.143:47
Outline - 544:40
First-principles assessment of catalysis by confinement: NO oxidation on pure silica frameworks with voids of molecular dimensions 45:12
Catalytic Consequences of Confinement - 145:26
Catalytic Consequences of Confinement - 246:17
Catalytic Consequences of Confinement - 347:30
Catalytic Consequences of Confinement - 447:32
Assessment of NO oxidation pathway in unconfined space - 148:10
Assessment of NO oxidation pathway in unconfined space - 248:31
Assessment of NO oxidation pathway in unconfined space - 349:45
Effect of confinement on ΔH‡ and ΔS‡ - 151:11
Effect of confinement on ΔH‡ and ΔS‡ - 252:23
Effect of confinement: «physical» catalysis53:25
Conclusions - 154:03
Conclusions - 256:03
Conclusions - 356:06
Conclusions - 456:12
Conclusions - 556:44
Structure-dependent microkinetic modeling56:58