Engineering Metal-Organic Frameworks thumbnail
Pause
Mute
Subtitles not available
Playback speed
0.25
0.5
0.75
1
1.25
1.5
1.75
2
Full screen

Engineering Metal-Organic Frameworks

Published on Jan 04, 2019453 Views

Metal organic frameworks (MOFs) are a class of ultra-porous materials synthesized by coordinating inorganic nodes with organic ligands. The obtained self-assembled crystals have exceptionally high acc

Related categories

Chapter list

Engineering Metal-Organic Frameworks00:00
Collaborators00:29
The funding organizations01:19
The TEAM01:58
Layout02:33
Porous Coordination Polymers - 103:17
Porous Coordination Polymers - 203:27
Porous Coordination Polymers - 303:35
Porous Coordination Polymers - 403:39
Porous Coordination Polymers - 503:42
Porous Coordination Polymers - 603:48
Porous Coordination Polymers - 703:49
Porous Coordination Polymers - 803:52
Porous Coordination Polymers - 903:56
Porous Coordination Polymers - 1003:59
Introduction: Metal-Organic Frameworks (MOFs)04:22
An example of an archetypal Zn (MOF) - 105:07
An example of an archetypal Zn (MOF) - 205:34
Pore size06:03
Architecture of the unit cell06:26
Functional groups06:43
How do we make MOFs? The example of MOF-507:16
Properties: Metal-Organic Frameworks (MOFs)08:08
What is our vision and contribution to the field?09:23
Functionalization with particles… and more…10:09
Use of biomacromolecules for the preparation of MOF-composites10:43
Use of biomacromolecules as seeds: Biomimetic Mineralization11:20
MOF precursors11:45
Biomimetic mineralization on Viruses and Cells12:45
What is our vision and contribution to the field?13:34
Sensing, Optics, Microelectronics, Energy, … 13:48
MOFs for sensing - 115:03
MOFs for sensing - 215:52
Increasing interest in device fabrication based on MOFs16:35
Device Fabrication .... Positioning MOFs17:06
Anisotropic functional properties underpin technology17:41
….What is the connection with MOFs?18:30
A few examples:18:57
MOF precursors - 119:18
Ceramic nanoparticles - 119:32
Ceramic nanoparticles - 219:41
SEM - Solvothermal method20:00
OPTICAL MICROSCOPE, following the reaction (time) 8020:29
OPTICAL MICROSCOPE, following the reaction (time) 5020:36
OPTICAL MICROSCOPE, following the reaction (time) 1420:40
OPTICAL MICROSCOPE, following the reaction (time) 620:43
OPTICAL MICROSCOPE, following the reaction (time) 220:49
Dependence of the nucleation time with the concentration21:00
Dependence of the nucleation time with the temperature21:32
Micromolding for MOF pattern fabrication21:51
PDMS stamp22:06
The PDMS stamp is placed on a substrate22:09
The MOF solution is infiltrated into the cavities - 122:12
The MOF solution is infiltrated into the cavities - 222:13
The MOF solution is infiltrated into the cavities - 322:19
Evaporation and MOF crystal formation occur - 122:21
Evaporation and MOF crystal formation occur - 222:25
Evaporation and MOF crystal formation occur - 322:26
MOF Pattern formation22:29
Pattern MIMIC - controlled growth in the channels22:30
Structuralization22:55
Pseudomorphic Replication23:23
Separation Water/Ethanol23:55
Positioning24:50
MOFs Via CVD - 125:06
MOFs Via CVD - 225:31
Compatible with the current lithographic protocols (lift-off)26:02
PDMS - 127:10
PDMS - 227:27
PDMS - 327:29
ZnO27:34
Ligand in the gas phase - 127:39
Ligand in the gas phase - 227:44
Ligand in the gas phase - 327:48
MOFs via CVD (gas), MOFs via solvothermal (solution) - 128:01
MOFs via CVD (gas), MOFs via solvothermal (solution) - 228:40
Other Conversions from Ceramics - 129:05
Benzene-1,3,5-TriCarboxylic acid - 129:41
Benzene-1,3,5-TriCarboxylic acid - 230:04
Benzene-1,3,5-TriCarboxylic acid - 330:10
Benzene-1,3,5-TriCarboxylic acid - 430:11
Supported copper substrate30:18
Photoresist deposited on copper30:29
Exposure of a resist to UV light with a photolithographic mask30:30
Etching of the masked (unexposed) regions30:39
Zoom on the developed resist30:47
Etching of the exposed copper30:49
Removal of the protective photoresist -1 30:56
Removal of the protective photoresist - 231:01
Removal of the protective photoresist - 331:12
Formation of Cu(OH)2 nanotubes exposing the metal to NaOH and (NH4 )2S2O831:14
In our case, how does the conversion occur?31:31
Cu(OH)2 NTs / Time evolution31:39
1s31:53
25s32:05
60s32:07
300s32:12
600s32:19
1800s32:27
Conversion of the nanotubes into MOFs (HKUST-1)* - 132:29
Conversion of the nanotubes into MOFs (HKUST-1)* - 232:39
Advanced Functional Materials33:00
Crystals after sonication33:15
HKUST-1 from Copper Meshes33:41
HKUST-133:56
MOF film, case 134:14
MOF film, case 234:35
Cu(OH)2 nanotubes, on Cu(m) on a silicon wafer - 134:41
H2BDC in presence of Cu(OH)235:08
Cu(OH)2 nanotubes, on Cu(m) on a silicon wafer - 235:39
Cu(OH)2 nanotubes, on Cu(m) on a silicon wafer - 335:52
Cu(OH)2 nanotubes, on Cu(m) on a silicon wafer - 436:11
Cu(OH)2 nanotubes, on Cu(m) on a silicon wafer - 537:04
Cu(OH)2 nanotubes, on Cu(m) on a silicon wafer - 637:11
Cu(OH)2 nanotubes, on Cu(m) on a silicon wafer - 737:19
Cu(OH)2 nanotubes, on Cu(m) on a silicon wafer - 837:22
Cu(OH)2 nanotubes, on Cu(m) on a silicon wafer - 937:23
Cu(OH)2 nanotubes, on Cu(m) on a silicon wafer - 1037:24
Cu(OH)2 nanotubes, on Cu(m) on a silicon wafer - 1137:26
Cu(OH)2 nanotubes, on Cu(m) on a silicon wafer - 1237:27
Cu(OH)2 nanotubes, on Cu(m) on a silicon wafer - 1337:29
Cu(OH)2 nanotubes, on Cu(m) on a silicon wafer - 1437:29
Cu(OH)2 nanotubes, on Cu(m) on a silicon wafer - 1537:33
Front view, Lateral view37:48
Cu(OH)238:03
Out-of-plane investigation39:00
Azimuthal angle dependence investigation 39:27
Application40:23
Summary!41:12
Thank you!41:57
3 nd International Conference on Metal Organic Frameworks and Porous Polymers42:03