Robust Design Optimization – from the idea to the optimized product thumbnail
Pause
Mute
Subtitles
Playback speed
0.25
0.5
0.75
1
1.25
1.5
1.75
2
Full screen

Robust Design Optimization – from the idea to the optimized product

Published on Jan 06, 20142242 Views

Related categories

Chapter list

Understand your design00:00
Agenda00:57
Understand your Design: Motivation for parametric variation04:01
Motivation04:31
Understandig alternative designs07:04
Understand a Design08:39
Engineering a Design11:54
Benefits of a parametric design variation12:35
Design Improvement - 114:42
Design Improvement - 215:19
Improve conflicting properties - 116:31
Improve conflicting properties - 217:58
Dealing with tolerances - 118:24
Dealing with tolerances - 219:21
Matching simulation and test - 120:29
Matching simulation and test - 221:31
System Simulation22:59
Multiphysics simulation based on system coupling24:06
Model Reduction for Nonlinear Components24:32
Behind optiSLang27:06
Understand Your Design: Parametric Workflow in ANSYS28:47
Multiphysics Analysis of an Electric-Thermal Actuator29:14
The ANSYS Workbench philosophy30:00
Thermal-electric Actuator31:25
Where to get the parameters43:18
CAD-Model Variation46:22
Which CAD system provides parametric interfaces?46:56
CAD Parameters47:17
Use the SpaceClaim Direct Modeler47:53
Parametric Material Modeling48:47
MS Excel50:19
Fully Automated Simulation Workflows in APDL - 151:13
Fully Automated Simulation Workflows in APDL - 252:37
Understand your Design: manual Variation53:39
Example: Notch - 255:58
Example: Notch - 356:44
Example: Notch - 101:01:48
Manual variations - 101:02:04
Manual variations - 201:02:20
Manual vs automatic sampling01:04:51
The automatic sampling01:05:38
Understand your Design: Typical Questions01:06:06
Content01:06:58
How to evaluate 1000 designs? - 101:07:41
How to evaluate 1000 designs? - 201:08:28
How to evaluate 1000 designs? - 301:11:39
How to evaluate 1000 designs? - 401:12:22
How to evaluate 1000 designs? - 501:13:26
How to evaluate 1000 designs? - 601:13:44
The optiSLang Meta-model of Optimal Prognosis (MOP)01:26:05
The Coefficient of Prognosis (CoP)01:26:13
Accuracy and numerical noise01:26:47
Reviewing the results01:30:09
Robust parameter settings01:30:18
Determining robust parameter settings01:31:41
BUT - Do we need always converging and regeneratable models?01:32:34
Restart option01:33:36
Understand your Design: Hard - and Software for Performant Design Variation01:34:12