Bayesian Data Fusion with Gaussian Process Priors : An Application to Protein Fold Recognition thumbnail
Pause
Mute
Subtitles not available
Playback speed
0.25
0.5
0.75
1
1.25
1.5
1.75
2
Full screen

Bayesian Data Fusion with Gaussian Process Priors : An Application to Protein Fold Recognition

Published on Feb 25, 20077546 Views

Various emerging quantitative measurement technologies are producing genome, transcriptome and proteome-wide data collections which has motivated the de- velopment of data integration methods within a

Related categories

Chapter list

Bayesian Data Fusion with GPs - An Application to Protein Fold Recognition00:00
Overview pt 101:11
Overview pt 201:21
Overview pt 301:31
Overview pt 401:45
Overview pt 501:55
Motivation pt 101:57
Motivation pt 202:12
Motivation pt 302:45
Motivation pt 403:15
Motivation pt 503:33
Motivation pt 604:05
Motivation pt 704:31
Gaussian Processes pt 105:12
Gaussian Processes pt 205:23
Gaussian Processes pt 305:37
Gaussian Processes pt 406:06
Gaussian Processes pt 506:37
Gaussian Processes pt 607:02
Gaussian Processes pt 707:25
Gaussian Processes pt 808:01
Gaussian Processes pt 908:08
Gaussian Processes pt 1008:12
Gaussian Processes pt 1108:14
Gaussian Processes pt 1208:16
Gaussian Processes pt 1308:27
GP Regression pt 108:35
GP Regression pt 208:37
GP Regression pt 309:02
GP Regression pt 409:17
GP Regression pt 509:27
GP Regression pt 609:39
GP Regression pt 709:42
GP Regression pt 810:19
GP Regression pt 911:27
GP Classification pt 112:24
GP Classification pt 212:38
GP Classification pt 313:22
GP Classification pt 413:44
Data Augmentation Trick pt 114:19
Data Augmentation Trick pt 215:27
Data Augmentation Trick pt 316:04
Joint Likelihood pt 116:58
Joint Likelihood pt 218:04
Approximate Posteriors pt 118:39
Approximate Posteriors pt 219:12
GP Classification pt 520:14
GP Classification pt 620:20
GP Classification pt 720:22
GP Classification pt 820:37
GP Classification pt 920:53
GP Classification pt 1021:12
GP Classification pt 1121:26
Comparison with MCMC pt 121:29
Comparison with MCMC pt 221:31
Comparison with MCMC pt 321:32
Comparison with MCMC pt 421:33
Comparison with MCMC pt 521:35
Experiments pt 1022:02
Experiments pt 1122:46
Composite Covariance pt 122:53
Composite Covariance pt 223:25
Composite Covariance pt 323:27
Composite Covariance pt 423:29
Composite Covariance pt 523:30
Composite Covariance pt 623:32
Composite Covariance pt 723:33
Composite Covariance pt 823:35
Composite Covariance pt 923:50
Composite Covariance pt 1023:51
Composite Covariance pt 1123:52
Composite Covariance pt 1223:54
Composite Covariance pt 1324:10
Composite Covariance pt 1424:24
Composite Covariance pt 1524:39
Composite Covariance pt 1624:49
Composite Covariance pt 1724:50
Composite Covariance pt 1825:18
Composite Covariance pt 1925:29
Composite Covariance pt 2025:49
Composite Covariance pt 2125:50
Composite Covariance pt 2225:53
Composite Covariance pt 2326:39
Composite Covariance pt 2427:22
Composite Covariance pt 2527:45
Conclusions pt 127:55
Conclusions pt 228:14
Conclusions pt 328:25
Conclusions pt 428:37