0.25
0.5
0.75
1.25
1.5
1.75
2
Classification with Deep Invariant Scattering Networks
Published on Jan 16, 201316413 Views
High-dimensional data representation is in a confused infancy compared to statistical decision theory. How to optimize kernels or so called feature vectors? Should they increase or reduce dimension
Related categories
Chapter list
Classification with Deep Invariant Networks00:00
High Dimensional Classification - 100:24
High Dimensional Classification - 201:44
Deep Neural Networks - 104:06
Deep Neural Networks - 206:09
Intra-Class Variability08:37
Translations and Deformations10:58
Rotation and Scaling Variability11:53
Frequency Transpositions - 112:23
Frequency Transpositions - 213:00
Frequency Transpositions - 313:06
Cascade of Transformation Groups13:16
Understanding Deep Networks14:46
Stable Discriminant Invariants - 116:04
Stable Discriminant Invariants - 216:05
Stable Discriminant Invariants - 316:34
Stable Discriminant Invariants - 416:42
Stable Discriminant Invariants - 517:11
Stable Discriminant Invariants - 617:23
Stable Discriminant Invariants - 717:30
Stable Discriminant Invariants - 817:41
Stable Discriminant Invariants - 917:49
Stable Discriminant Invariants - 1017:51
Stable Discriminant Invariants - 1117:55
Stable Discriminant Invariants - 1218:00
Stable Discriminant Invariants - 1318:01
Stable Discriminant Invariants - 1418:02
Stable Translation Invariants - 118:09
Stable Translation Invariants - 218:10
Stable Translation Invariants - 318:25
Stable Translation Invariants - 418:31
Stable Translation Invariants - 518:38
Stable Translation Invariants - 618:42
Stable Translation Invariants - 718:58
Stable Translation Invariants - 819:14
Wavelet Transform - 119:31
Wavelet Transform - 220:11
Why Wavelets ?20:38
Image Wavelet Transform21:07
Wavelet Translation Invariance - 121:38
Wavelet Translation Invariance - 221:58
Wavelet Translation Invariance - 322:15
Recovering Lost Information23:02
Deep Convolution Network - 123:56
Deep Convolution Network - 224:01
Deep Convolution Network - 324:10
Deep Convolution Network - 424:19
Scattering Vector - 124:37
Scattering Vector - 224:44
Amplitude Modulation - 124:52
Amplitude Modulation - 225:05
Amplitude Modulation - 325:26
Textures with Same Spectrum - 125:49
Textures with Same Spectrum - 226:06
Textures with Same Spectrum - 326:17
Scattering Cascade - 126:32
Scattering Cascade - 226:49
Scattering Cascade - 327:05
Scattering Properties27:37
Scattering Inversion: Phase Recovery - 128:24
Scattering Inversion: Phase Recovery - 228:26
Scattering Inversion: Phase Recovery - 328:56
Scattering Inversion: Phase Recovery - 429:05
Audio Reconstruction - 129:19
Audio Reconstruction - 229:31
Audio Reconstruction - 329:48
Digit Classification: MNIST30:05
Classification of Textures31:24
How to Cascade Invariants?32:17
Roto-Translation Group - 133:06
Roto-Translation Group - 233:27
Roto-Translation Group - 333:46
Roto-Translation Group - 433:55
Roto-Translation Group - 534:05
Wavelet Transform on a Group - 134:17
Wavelet Transform on a Group - 234:46
Wavelet Transform on a Group - 335:00
Wavelet Transform on a Group - 435:28
Wavelet Transform on a Group - 535:52
Rotation and Scaling Invariance36:18
Learning: Group Pursuit36:50
Stable Parts and Wavelets - 138:09
Stable Parts and Wavelets - 239:00
Stable Parts and Wavelets - 339:39
Sparse Learning of Stable Parts - 139:50
Sparse Learning of Stable Parts - 240:41
Sparse Learning of Stable Parts - 341:01
Conclusion41:39