![Continuous-Time Regression Models for Longitudinal Networks thumbnail](https://apiminio.videolectures.net/vln/lectures/17054/1/en/thumbnail.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=masoud%2F20241217%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20241217T121014Z&X-Amz-Expires=604800&X-Amz-SignedHeaders=host&X-Amz-Signature=7e42d877db7d19a972ac74f7c97028faae4fbab6e83ae8885f18bffcb371660d)
en
0.25
0.5
0.75
1.25
1.5
1.75
2
Continuous-Time Regression Models for Longitudinal Networks
Published on Jan 25, 20123854 Views
The development of statistical models for continuous-time longitudinal network data is of increasing interest in machine learning and social science. Leveraging ideas from survival and event history a
Related categories
Chapter list
Continuous-Time Regression Models for Longitudinal Networks00:00
Motivation00:08
Outline - 102:07
Outline - 202:34
Counting Processes for Networks02:35
Egocentric Example: Citation Networks03:35
Relational Example: Social Networks04:34
Multivariate Counting Process05:33
Doob-Meyer Decomposition06:11
Outline - 306:49
Modeling the Intensity Process06:54
Network Statistics09:01
Outline - 409:37
Partial Likelihood (fitting the Cox model) - 109:41
Partial Likelihood (fitting the Cox model) - 210:05
Least Squares (fitting the Aalen model)10:36
Network Data Sets11:47
Recovering time-varying coefficients12:03
Irvine data set12:51
MetaFilter data set13:44
Summary14:22
References14:57