Multiple hypotheses testing in functional neuroimaging applications thumbnail
Pause
Mute
Subtitles
Playback speed
0.25
0.5
0.75
1
1.25
1.5
1.75
2
Full screen

Multiple hypotheses testing in functional neuroimaging applications

Published on May 22, 20074820 Views

Related categories

Chapter list

Multiple hypotheses testing in functional <br>neuroimaging applications<br> - Time-resolved electromagnetic brain mapping00:02
Functional neuroimaging01:26
Functional neuroimaging0102:04
Functional neuroimaging0202:16
MEG/EEG imaging<br> - Chronography of brain activations03:05
MEG/EEG imaging<br> - Chronography of brain activations 0111:18
MEG/EEG imaging - <br>Chronography of brain activations0211:43
MEG/EEG imaging<br> - Chronography of brain activations0311:56
A pipeline of processes12:02
Inference for images15:01
Uncorrected p-value, = 0.116:39
Uncorrected p-value, = 0.1 0118:00
Uncorrected p-value, = 0.1 0218:46
Controlling the error rate19:01
Controlling the error rate 0119:53
Controlling the error rate 0220:25
Controlling the error rate 0320:36
Bonferroni correction21:19
Bonferroni correction 0122:34
The General(ized) Linear Model - <br>Random-field theory22:35
The General(ized) Linear Model<br> - Random-field theory0122:47
The General(ized) Linear Model - <br>Random-field theory0222:48
The General(ized) Linear Model<br> - Random-field theory0326:49
When the image support is a surface<br> - Back to MEG/EEG imaging28:33
When the image support is a surface<br> - Back to MEG/EEG imaging0130:43
When the image support is a surface<br> - Back to MEG/EEG imaging0230:44
When the image support is a surface<br> - Back to MEG/EEG imaging0330:55
First approach: the bootstrap<br> - Take advantage of repeated measurements (trials) in M/EEG31:44
First approach: the bootstrap<br> - Take advantage of repeated measurements (trials) in M/EEG0132:28
First approach: the bootstrap<br> - Take advantage of repeated measurements (trials) in M/EEG0232:38
Bootstrapping current density maps32:43
Bootstrapping current density maps0133:21
Controlling the FWER using permutations33:32
Controlling the FWER using permutations0133:39
Controlling the FWER using permutations0234:19
Controlling the FWER using permutations0338:45
Controlling the FWER using permutations0438:47
Controlling the FWER using permutations0538:48
Controlling the FWER using permutations<br> - Heterogeneous voxel null distribution ( = 0.05)39:37
Results - <br>Monte-Carlo simulations41:44
Imaging stationary brain processes<br> - Visuomotor coordination42:58
Imaging stationary brain processes<br> - Visuomotor coordination0146:00
Imaging stationary brain processes<br> - Visuomotor coordination0247:55
Imaging stationary brain processes<br> - Visuomotor coordination0347:55
Results0149:43
Controlling the FWFR using permutations0757:22
Controlling the FWFR using permutations0859:58